0=-4x^2+64x+128

Simple and best practice solution for 0=-4x^2+64x+128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-4x^2+64x+128 equation:



0=-4x^2+64x+128
We move all terms to the left:
0-(-4x^2+64x+128)=0
We add all the numbers together, and all the variables
-(-4x^2+64x+128)=0
We get rid of parentheses
4x^2-64x-128=0
a = 4; b = -64; c = -128;
Δ = b2-4ac
Δ = -642-4·4·(-128)
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32\sqrt{6}}{2*4}=\frac{64-32\sqrt{6}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32\sqrt{6}}{2*4}=\frac{64+32\sqrt{6}}{8} $

See similar equations:

| |b-10|=19 | | (9y+102)/8=6 | | 35-12x(2+1)=-1 | | 2(x-3)+10=-6 | | 8+7g=+2g | | y^2-25y-100=0 | | 2s-8=+9s-7 | | 3(x+5)-12=9 | | $C=15n+85$ | | 4p•5=100 p= | | 8=a-4+a | | 7t+2=34t+375 | | 8=(a-4)+a | | 25×(9+4)=n | | 3(2+3t)=6t+24 | | 3x^2=115 | | D^2(D^2+4)=x^2 | | 0,2g−6=9 | | 5(x2-5)=R | | 8y+12-18y=1 | | 8y+12-18y=12 | | 2x+-14=5x+10 | | 3^10+4y=81 | | ?x25/8=2/7 | | 105=(5x)*4+25 | | 4x-3/2=9x-6/8 | | |5x-3|=4-2x | | 2x+1,5x–20=10+0,5x | | 10(m-2)=3(m+1) | | 5x-4=2(-3+7)+3 | | 2/x=35/105 | | 3x+9=4x-29 |

Equations solver categories